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Event segmentation is a spontaneous part of perception, important for processing continuous information and organizing it into
memory. Although neural and behavioral event segmentation show a degree of inter-subject consistency, meaningful individual
variability exists atop these shared patterns. Here we characterized individual differences in the location of neural event boundaries
across four short movies that evoked variable interpretations. Event boundary alignment across subjects followed a posterior-to-anterior
gradient that was tightly correlated with the rate of segmentation: slower-segmenting regions that integrate information over longer
time periods showed more individual variability in boundary locations. This relationship held irrespective of the stimulus, but the degree
to which boundaries in particular regions were shared versus idiosyncratic depended on certain aspects of movie content. Furthermore,
this variability was behaviorally significant in that similarity of neural boundary locations during movie-watching predicted similarity
in how the movie was ultimately remembered and appraised. In particular, we identified a subset of regions in which neural boundary
locations are both aligned with behavioral boundaries during encoding and predictive of stimulus interpretation, suggesting that event
segmentation may be a mechanism by which narratives generate variable memories and appraisals of stimuli.
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Introduction
Event segmentation refers to the spontaneous chunking of con-
tinuous experiences into meaningful distinct units or events as
part of everyday perception (Zacks et al. 2007; Zacks and Swallow
2007). This cognitive mechanism is an automatic and adaptive
part of perceptual processing, optimizing attention and facili-
tating the subsequent organization of experiences into memory
(Zacks et al. 2007; Zacks and Swallow 2007; Kurby and Zacks 2008;
DuBrow and Davachi 2016; McGatlin et al. 2018).

Event boundaries, typically reported behaviorally by pressing a
button to indicate transitions between events (Newtson 1973), are
to some extent “normative,” or consistent across people. Boundary
locations not only have high intersubject reliability, but also are
meaningfully structured, corresponding to moments of decreased
contextual stability where the prediction of the immediate future
fails, such as changes in action, goals, or locations (Newtson et al.
1976; Speer et al. 2009; Zacks et al. 2009; Raccah et al. 2022). Neural
responses at normative event boundaries have been reported in
several regions including the hippocampus, lateral frontal cortex,
precuneus, cingulate, and lateral parietal cortex (Zacks et al. 2001;
Speer et al. 2003, 2007; DuBrow and Davachi 2013, 2016; Ezzyat
and Davachi 2014; Baldassano et al. 2017; Ben-Yakov and Henson
2018).

Despite this degree of consistency in how people segment
events, meaningful individual differences exist atop these shared
tendencies. Individual differences in behavioral segmentation
are stable over time (Speer et al. 2009), correlate with age and

other cognitive abilities such as working memory capacity, long-
term memory retrieval, and performance on other tasks (Zacks
et al. 2006; Sargent et al. 2013; Bailey et al. 2017; Jafarpour et al.
2022), and are disrupted in certain clinical conditions such as
schizophrenia (Zalla et al. 2004). Yet despite this ample behavioral
evidence, investigations into individual differences in neural event
segmentation have been very limited. This is due, in part, to
the challenge of capturing individual boundaries (as opposed
to relying on normative boundaries or using stimuli with pre-
defined boundaries) while also preserving natural viewing (i.e.
avoiding having subjects segment during encoding, which could
alter the viewing experience and introduce unwanted effects
on brain activity, or segment upon a second, biased viewing).
However, recently developed algorithms for identifying latent
brain state changes (Baldassano et al. 2017; Geerligs et al. 2021)
allow us to infer neural event boundaries from fMRI data acquired
during passively experienced continuous “naturalistic” stimuli
(e.g. movies) without prior knowledge of boundary locations.

Characterizing individual differences in neural event segmen-
tation during natural, passive viewing can extend our under-
standing of both cortical variability in event segmentation and
the functional role of segmentation in cataloging experiences.
Individual neural activity at normative event boundaries during a
narrative reading task has been shown to predict the organization
of information into long-term memory (Ezzyat and Davachi 2011).
Here we sought to extend this work: above and beyond differences
in objective recall accuracy, complex narrative stimuli generate
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personalized, idiosyncratic memories and appraisals (Black and
Bower 1980), which could arise in part from individual differ-
ences in event segmentation during encoding—in other words,
how the same (presented) events are (uniquely) segmented. We
hypothesized that an individual’s pattern of neural event bound-
aries during movie-watching would predict how they ultimately
remembered and appraised the stimulus. Further, these effects
might be somewhat stimulus-dependent: different stimuli (in our
case, movies) might evoke more or less individual variability over-
all, more or less individual variability in specific cortical regions,
and/or differences in the specific regions where neural event
boundaries relate to ultimate appraisal. We investigated these
questions in a dataset of healthy adults who freely viewed and
appraised four short movies during fMRI scanning.

To preview our findings, we first demonstrated that a recently
developed algorithm for automatically inferring neural event
boundaries (Baldassano et al. 2017) can operate reliably at the
individual level. Using individually defined neural boundaries,
we found that across-subject variability followed a posterior-to-
anterior cortical gradient: sensory processing regions were most
consistent across individuals, whereas higher-order association
regions were most variable. We found evidence for a relationship
between individual neural event boundaries and the ultimate
recall and appraisal of narratives in a subset of regions that
also showed normative alignment with behavioral boundaries
in our movies. The specific regions showing these relationships
were different across movies, suggesting that depending on the
stimulus, distinct regions support aspects of online “chunking”
that impact how the stimulus is later remembered and appraised.

Materials and methods
Experiment 1 (main fMRI experiment)
We recruited and scanned a total of 48 subjects (all native English
speakers; 27F, median age 24.5, range = (19,64)) at the National
Institutes of Health (NIH). All subjects provided informed writ-
ten consent prior to the start of the study in accordance with
experimental procedures approved by the Institutional Review
Board of the NIH. We discarded incomplete datasets without all
four movies (described below), leaving 43 subjects whose data
we analyzed here. Subjects were compensated $50 per hour for
their time.

Subjects watched four movies (ranging from 7:27–12:27 min
each) while we collected fMRI data using a 3 T Siemens Prisma
scanner with a 64-channel head coil. We refer to these movies
here by four short titles: Iteration, Defeat, Growth, and Lemonade.
The movie order was pseudorandomized for each subject such
that order was counterbalanced at the group level. Functional
images were acquired using a T2∗-weighted multiband, multi-
echo echo-planar imaging (EPI) pulse sequence with the fol-
lowing parameters: TR = 1,000 ms, echo times (TE) = [13.6, 31.86,
50.12 ms], flip angle = 60◦, field of view = 216 × 216 mm2, in-
plane resolution = 3.0 mm2, slice thickness 3.0 mm, number
of slices = 52 (whole-brain coverage), multiband acceleration
factor = 4). Anatomical images were acquired using a T1-
weighted MPRAGE pulse sequence with the following parameters:
TR = 2,530 ms, TE = 3.30 ms, flip angle = 7◦, field of view = 256 ×
256 mm2, in-plane resolution = 1.0 mm2, slice thickness = 1.0 mm).

The movies were projected onto a rear-projection screen
located in the magnet bore and viewed with an angled mirror.
The experiment was presented using PsychoPy (Peirce et al. 2019).
Following each movie (i.e. while still in the scanner), the subjects
completed a task battery designed to probe their interpretations

and reactions to the movie, including the following: (i) a 3-min
free recall/appraisal task in which subjects spoke freely about
their memories and impressions of the movie, during which
their speech was captured with a noise-canceling microphone;
(ii) multiple-choice comprehension questions designed to ensure
they had been paying attention (e.g: “At what holiday dinner does
the father yell at the older son?” for Growth); (iii) multiple-choice
and Likert-style items assessing reactions to various characters
and to the movie overall. See section “Measuring cross-subject
similarity in movie recall/appraisal” for the experimental instruc-
tions for the free recall/appraisal task and see study GitHub
repository for all of the memory comprehension questions.

During a separate behavioral visit, subjects completed a bat-
tery of tasks and questionnaires including selected instruments
from the NIH Cognition and Emotion toolboxes as well as other
psychological and psychiatric self-report scales. These data are
not analyzed or reported here.

MRI data preprocessing
Following the conversion of the original DICOM images to
NIFTI format, we used AFNI (Cox 1996) to preprocess MRI
data. Preprocessing included the following steps: despiking,
head motion correction, affine alignment with subject-specific
anatomical (T1-weighted) image, nonlinear alignment to a group
MNI template (MNI152_2009), combination of data across the
three echoes using AFNI’s “optimally combine” method, and
smoothing with an isotropic full-width half-maximum of 4 mm.
Each subject’s six motion time series, their derivatives, and
linear polynomial baselines for each of the functional runs were
regressed from the data prior to further analysis. All analyses
were conducted in volume space and projected to the surface for
visualization purposes.

We used mean framewise displacement (MFD), a per-subject
summary metric, to assess the amount of head motion in the
sample. MFD was overall relatively low [Iteration: mean = 0.08,
SD = 0.03, range = (0.03, 0.18); Defeat: mean = 0.08, SD = 0.03,
range = (0.04, 0.19); Growth: mean = 0.07, SD = 0.03, range = (0.04,
0.17); Lemonade: mean = 0.08, SD = 0.03, range = (0.04, 0.17)]
and did not differ across movies (repeated-measures ANOVA,
F(3,126) = 1.44, P = 0.23).

We included an additional preprocessing step in which we used
a shared response model (Chen et al. 2015) as implemented in
BrainIAK (Kumar et al. 2020) to account for different functional
topographies across individuals. This step was performed for each
of the four movies separately. First, we fit a model to capture
the reliable whole-brain responses to the movie across subjects
in a lower dimensional feature space (features = 50). We then
applied this model to reconstruct the individual voxelwise time
courses for each participant. This procedure serves as an addi-
tional denoising step and makes spatiotemporal patterns more
consistent across subjects.

Experiment 2 (auxiliary behavioral experiment)
We collected an auxiliary behavioral dataset (i.e. outside the
MRI scanner) at Dartmouth College to further refine and
support results from Experiment 1. 44 subjects (21F, median
age 20, range = 18–32) were presented with the same paradigm
as in Experiment 1, except that while watching each film,
individuals were instructed to press a button each time they
perceived that a new scene is starting (i.e. points in the
movie when there is a “major change in topic, location, time,
etc.”). They were also told to expect scenes to be between
10 s and 3 min long. These were the same instructions used
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in Baldassano et al. (2017). We discarded subjects who did
not complete all four movies, leaving n = 40 for our analy-
sis. The paradigm was hosted and presented using JsPsych
(de Leeuw 2015). Subjects were compensated $15 an hour for their
time or given participation credit, and the study was approved by
the Institutional Review Board of Dartmouth College.

Movie overview
Our stimuli were four short films made by independent film-
makers that were chosen because they were rich and engaging,
yet they depicted ambiguous scenarios that provoked divergent
reactions and interpretations in different individuals. Three of the
movies were “social” in nature and followed different narratives
of humans taking actions and interacting, whereas the fourth
depicted purely mechanical information (a long, complex Rube
Goldberg machine that traversed a house). We chose independent
films so that subjects would be less likely to have experienced
the material before. In a debriefing questionnaire, three subjects
in Experiment 1 reported having seen one of the movies (Growth)
prior to the experiment.

Here we provide brief descriptions of each movie along with
YouTube links. (Note that the versions presented to subjects were
edited to remove credits and title pages; these edited versions
are available upon request.) Iteration (https://youtu.be/c53fGdK84
rc; 12:27 min:s) is a sci-fi movie that follows a female character
as she goes through multiple iterations of waking up and trying
to escape a facility. A male character appears toward the end
to help her. Defeat (https://youtu.be/6yN9VH_4GSQ; 7:57 min:s)
follows a family of three (mother, two children) as the brother
bullies his sister and she builds a time machine to go back and
get revenge. Growth (https://youtu.be/JyvFXBA3O8o; 8:27 min:s)
follows a family of four (mother, father, two brothers) as the
children grow up and eventually move out amid some family
conflict. Lemonade (https://youtu.be/Av07QiqmsoA; 7:27 min:s) is
a Rube-Goldberg machine consisting of a series of objects that
move throughout a house and ends in the pouring of a cup of
lemonade. This movie was lightly edited to remove fleeting shots
of human characters. Iteration and Defeat both contained screen
cuts (continuity editing), whereas Growth and Lemonade were shot
in a continuous fashion with the camera panning smoothly from
one scene to the next.

Automatic neural event boundary detection
To automatically identify neural event boundaries from fMRI data,
we fit a series of Hidden Markov Models (HMMs) (split-merge
option; Baldassano et al. 2017) as implemented in the BrainIAK
toolbox (Kumar et al. 2020), adapting code made available on
the Naturalistic Data tutorial website (Chang et al. 2020). The
HMM approach does not rely on annotations or hand-demarcated
events, but rather infers event boundaries from shifts in stable
patterns of brain activity. It relies on voxelwise patterns within
regions. We restricted our analyses to the neocortex and used
the 100-parcel, 7-network Schaefer parcellation (Schaefer et al.
2018), in keeping with past work using HMMs to identify event
boundaries (Cohen and Baldassano 2021).

The HMM approach assumes that each event has a distinct
signature of activity that shifts at event boundaries within region.
Specifically, the model assumes that (i) each subject starts in
an event and then each forthcoming timepoint is either in the
same event (state) or in the next state, and (ii) that the voxelwise
pattern of activity in a region is similar across timepoints within
the same event. The model identifies both the optimal number
of events and the transitions between these events. We were
ultimately interested in individual variability in the temporal

location of event boundaries. Although we acknowledge that
there is likely interesting individual variability in the number of
events (i.e. segmentation rate) in each region, this is a somewhat
different question than variability in the location of neural event
boundaries: consider that even if two individuals have the same
number of events in a region, the specific locations (timestamps)
of their event boundaries could still be completely different.
The location of boundaries is more directly related to the movie
content onscreen at any given moment than the overall number of
events, and therefore of greater scientific interest to us here, given
that our goals were to investigate (i) how moment-to-moment
segmentation patterns relate to ultimate appraisals, and (ii) how
movie content affects the anatomical locations and degree of this
variability. In addition to this theoretical justification, there are
two related methodological justifications to fixing the number
of events within a region while allowing locations to vary across
subjects. First, we are using an inherently noisy method to infer
neural event boundaries, which was created to work well at the
group level. Therefore, by fixing the number of events using group-
average data, we constrain the individual HMM solutions to a
reasonable number of events. Second, it is not clear how to reliably
estimate the optimal number of events at the individual level, as
training and test data need to be independent.

Therefore, to focus on individual variability in boundary loca-
tions, we first determined the optimal number of events (k) for
each region at the group level using a train-test split procedure
(with different subjects in the train and test groups). We used a
fairly liberal range of possible values for k: the minimum allowed
k was 6, and the maximum (90–150) differed across movies owing
to their different lengths, but always reflected a minimum average
event length of 5 s. For each movie and each region, we split
the subjects into train/test groups (each with 21/22 subjects) and
averaged voxelwise time courses in each group, resulting in one
average voxel-by-time array each for the training and test data.
We then fit a series of models to the average training data using
each possible value of k and tested each model on the average test
data, assessing model fit using the log-likelihood. After repeating
this procedure for each k, we took the k value with the maximum
log-likelihood as the optimal number of events within this region
for this train/test split. We repeated this procedure 100 times
with different train/test splits within each region. For each region,
we then calculated the median optimal k value across these
100 iterations and used this as the k value for our subsequent
analyses.

Using these fixed values of k, for each region, subject, and
movie, we then fit an HMM to that subject’s individual time
series to identify the location of implicit neural event boundaries.
Therefore, we had one set of boundary locations for each brain
region for each subject for each movie.

We evaluated the fit of the HMM to individual neural data
across movies to ensure that any across-movie differences in
degree of variability were not due to differences in quality of
model fit. Notably, the fit of the HMM (as measured by the
log-likelihood) is tightly coupled with the number of events
and our movies do differ in length (such that the model fit
is best with the shortest movie and worst with the longest
movie). When accounting for the difference in movie length,
the model fit does not differ across movies. Model fit was
also highest in sensory regions (e.g., V1) and decreased on a
cortical gradient in multimodal regions; this illustrates that
regions where there is more consistency across people (cf.
Fig. 1), are also regions where the model is performing better,
implying that more shared boundaries are not due to poor model
performance.

https://youtu.be/c53fGdK84rc
https://youtu.be/c53fGdK84rc
https://youtu.be/6yN9VH_4GSQ
https://youtu.be/JyvFXBA3O8o
https://youtu.be/Av07QiqmsoA
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Computing alignment across subjects
We used permutation testing to quantitatively assess the consis-
tency of neural event boundary locations across individuals. For
each movie, region, and pair of subjects, we permuted boundary
locations n = 1000 times to derive a z-score for the match between
true boundaries relative to the null distribution. In both the true
and permuted data, boundaries that were within 3 TRs (seconds)
of one another were counted as a match, consistent with past
work (Baldassano et al. 2017; Williams et al. 2022). We then created
subject-by-subject matrices of these z-scores in every region.
Importantly, depending on which member of a pair of subjects was
permuted (versus treated as the “ground truth”), there were slight
differences in the resulting z-score; we took the mean of the upper
and lower triangle of these matrices for subsequent analyses. We
used the same permutation-based approach to assess the consis-
tency of behavioral event boundaries acquired in Experiment 2.

Controlling for possible confounds
Several factors outside the ongoing cognitive processes of inter-
est could contribute to higher or lower alignment in detected
boundary locations between a given pair of subjects. The factors
detailed below were used as regressors of no interest to control for
these unwanted influences in the ensuing analyses, as described
in subsequent sections.

Inter-subject correlation of head motion
It is possible that shared head motion at similar moments in
the movie could lead the HMM to (perhaps falsely) detect similar
neural event boundaries in a given pair of subjects. To control for
this possibility, we computed the inter-subject correlation (ISC)
of the framewise displacement (FD) across time for each subject
pair. We then used this subject-by-subject motion-ISC matrix as
a nuisance regressor in subsequent analyses.

Overall head motion
Similarly, subjects with high overall levels of head motion likely
have lower-quality fMRI data, which could bias the detection
of neural event boundaries altogether (though importantly, as
detailed in “MRI data preprocessing”, absolute levels of head
motion were relatively low in our sample). To control for this
possible confound, we used each subject’s median FD across all
timepoints and generated a subject-by-subject similarity matrix
using the Anna Karenina principle (“all low (or high) motion
scorers are alike; each high (or low) motion scorer is different in
their own way”) by taking the mean score between each subject
pair (Finn et al. 2020).

Memory performance
Some subjects may simply have been paying better attention
throughout the scan session and/or during certain movies, which
could generate stronger stimulus-driven neural responses and,
in turn, drive up similarity in event boundaries among these
subjects. We controlled for this possibility using subjects’ per-
formance on the four multiple-choice memory recall questions
presented at the end of each movie, which were designed to
be challenging and require subjects to have paid close atten-
tion to answer correctly. We computed each subject’s memory
performance score as the fraction of correct responses on these
questions, and generated a subject-by-subject similarity matrix of
these scores also according to the aforementioned Anna Karenina
principle (“all low (or high) memory scorers are alike; each high
(or low) scorer is different in their own way”) by taking the mean

score between each subject pair (Finn et al. 2020). The same
approach was applied to the behavioral boundaries collected in
Experiment 2.

Across-subject alignment within movies
The goal of this analysis was to assess the degree to which
event boundary locations were aligned across subjects within
each movie. Subject-by-subject matrices of alignment values
(z-scores) in every region, generated using the permutation
method described above (see section “Computing alignment
across subjects”), were used.

Experiment 1
We fit a linear regression to regress out (i) head-motion ISC,
(ii) overall head motion, and (iii) memory performance (see “Con-
trolling for possible confounds” for more detail) from the subject-
by-subject boundary alignment matrix in each region. Using the
residuals of this regression, we took the median alignment value
(z-score) across subject pairs as the summary statistic for each
region. To determine whether alignment was significantly above
chance (i.e. greater than 0), we performed this same calculation
in a subject-wise bootstrapping framework (n = 10,000 bootstraps)
to create a non-parametric null distribution and compared our
observed median residual z-score to this distribution to calculate
a P-value. P-values were corrected for multiple comparisons using
the false discovery rate (FDR) based on the number of regions in
our parcellation (100) using an alpha of 0.05.

Experiment 2
We fit a linear regression to regress out memory performance
(see “Controlling for possible confounds” for more detail) from the
subject-by-subject matrix of alignment in behaviorally reported
event boundaries. Using the residuals of this regression, we took
the median alignment value (z-score) across subject pairs as the
summary statistic. To determine whether alignment was signifi-
cantly above chance (i.e. greater than 0), we performed this same
calculation in a subject-wise bootstrapping framework (n = 10,000
bootstraps) to create a non-parametric null distribution and
compared our observed median residual z-score to this distri-
bution to calculate a P-value.

Identifying stimulus-dependent properties by
taking the difference in alignment across movies
The goal of this analysis was to assess the degree to which
stimulus content influences across-subject alignment in event
boundary locations by comparing subject-by-subject alignment
matrices between pairs of movies.

Experiment 1
For a given region and pair of movies, we fit a linear regres-
sion to model the difference between the two subject-by-subject
alignment matrices as a function of the following regressors
of no interest: (i) difference in head-motion ISC, (ii) the differ-
ence in overall head motion, and (iii) the difference in memory
performance between the movies (see “Controlling for possible
confounds” for more detail). We then took the median value
from this residual difference matrix and compared it with a non-
parametric null distribution (n = 10,000 bootstraps) to calculate a
P-value. P-values were corrected for multiple comparisons using
the FDR based on the number of regions in our parcellation (100)
using an alpha of 0.05. To investigate the overall (i.e. whole-
brain) variation in alignment across movies, we employed a lin-
ear mixed-effects model, implemented using lme4 and lmerTest
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(Bates et al. 2015) in R. Estimated marginal means (EMMs) were
calculated using the emmeans package (Lenth 2023). We used the
intercept from the within-movie alignment regression (account-
ing for the regressors of no interest, see Methods section—“Across-
subject alignment within movies”), treating region as a random
effect.

Experiment 2
For a given pair of movies, we fit a linear regression to model the
difference between the two subject-by-subject alignment matri-
ces as a function of the following regressor of no interest: the
difference in memory performance between the movies (see “Con-
trolling for possible confounds” for more detail). We then took the
median value from this residual difference matrix and compared
it to a non-parametric null distribution (n = 10,000 bootstraps) to
extract a P-value. To investigate the variation in behavioral align-
ment across movies, we adopted the method used by Chen et al.
(2017b) and fit a linear mixed-effects model predicting alignment
by movie and memory (our regressor of no interest) with crossed
random effects. This approach allowed us to account for non-
independence of the pairwise alignment in the data from repeated
observations for each participant. To account for redundancy, we
manually adjusted the degrees of freedom and standard error, as
suggested by Chen et al. (2017b).

Measuring cross-subject similarity in movie
recall/appraisal
We used inter-subject representational similarity analysis (IS-
RSA) (Glerean et al. 2016; Chen et al. 2020; Finn et al. 2020) to inves-
tigate whether pairs of subjects that were similar in their neural
event boundaries in a region also had similar interpretations of
the movie.

To elicit appraisals, we presented the following prompt to
subjects immediately following each movie: “During this section,
you will have three minutes to say what you remember about the video.
You can talk about characters, events, your opinions, or anything else
that comes to mind. Try to fill the whole three minutes once the timer
appears and remember- there are no wrong answers!” Subjects spoke
freely while their speech was recorded using a noise-canceling
microphone. These recordings were professionally transcribed
and minimally cleaned to remove interjections, such as “um” or
“uh,” and repeated words. One subject’s recall data were not able
to be transcribed due to being corrupted by scanner noise and was
discarded from this analysis, leaving n = 42.

The text from each individual’s speech data was then
embedded into a 512-dimensional space via Google’s Universal
Sentence Encoder [USE; (Cer et al. 2018); implemented via https://
www.tensorflow.org/hub/tutorials/semantic_similarity_with_tf_
hub_universal_encoder]. We chose the USE model in part because
it was trained to identify similarities between pairs of sentences,
and, as a sanity check, because it was best able to differentiate
appraisals from different movies (i.e. recall between Growth-
Growth was more similar than recall between Growth-Defeat,

etc.), whereas this sensitivity was absent or weaker with other
pre-trained context-sensitive models that we tested (including
BERTBASE, MiniLM, and MPNet; Devlin et al. 2019; Song et al.
2020; Wang et al. 2020). USE was also used on event descriptions
in a recent publication (Lee and Chen 2022). We computed the
cosine similarity between the 512-dimensional vectors generated
by USE to measure the semantic similarity between pairs of
subjects’ interpretations, resulting in one subject-by-subject
appraisal similarity matrix per movie. In an IS-RSA, we then
used a Spearman correlation to compare the lower triangle of

these appraisal similarity matrices to the lower triangle of the
boundary alignment matrices in each region. A partial Mantel
test (n = 10,000 permutations; q < 0.05, FDR-corrected across
regions) was used to assess the relationship between event
boundary alignment and appraisal similarity while controlling for
memory performance (see “Controlling for possible confounds”
for more detail). By controlling for memory performance, we were
able to bias our findings towards relationships driven more by
subjective impressions and interpretations than objective recall
per se.

The total number of words spoken varied across subjects and
movies: Iteration: mean = 386, SD = 80, range = 213–547; Defeat:
mean = 362, SD = 78, range = 153–533; Growth: mean = 368, SD =
72, range = 243–520; Lemonade: mean = 359, SD = 84, range = 180–
576. The number of words differed significantly between movies
(repeated-measures ANOVA, F(3,123) = 2.87, P = 0.04). Post hoc
tests showed that the number of words used in Iteration was
significantly greater than the number of words used in Defeat
(paired t-test, t = 2.81, P = 0.01) and Lemonade (paired t-test, t = 2.12,
P = 0.04), which is not surprising, given that Iteration was the
longest movie (∼12 min compared to ∼ 8 min for the other three
movies). As our goal in this analysis was to compare similarity
in neural event boundary locations to similarity in appraisal
within a movie as opposed to across movies, differences in the
number of words used across movies should not influence our
results in a meaningful way. Importantly, the degree of similarity
in the appraisal of Iteration is not significantly higher compared
to the other movies. In fact, the highest similarity was in Growth,

which was greater than Iteration, Defeat, and Lemonade (paired
t-tests, t ≥ 11.84, P < 0.001) (median similarity—Iteration—0.58,
Defeat 0.59, Growth 0.63, and Lemonade 0.58; repeated-measures
ANOVA, F(3,2580) = 86.06, P < 0.0001). Therefore, there does not
seem to be a direct relationship between the number of words
used to appraise a movie and the degree of similarity in appraisals
across subjects.

Comparison of normative neural event
boundaries and normative behavioral event
boundaries
We used data from Experiment 2 to identify a set of group-level
or “normative” behavioral boundaries for each movie. Individuals’
button presses were first rounded to the nearest second. To make
the behavioral boundaries commensurate with the HMM-derived
neural boundaries, we needed to account for the delay in the
hemodynamic response, which may be partially offset by the
delay in behavioral motor responses (i.e. button presses) after a
boundary is detected. Therefore, we added 3 TRs/seconds to each
button press (without allowing for events past the end of the
movie).

We took two approaches, a density-based and a peak-based
method (described in turn below), to compute the similarity
between normative HMM-derived neural boundaries and nor-
mative behavioral boundaries.

Density alignment method
We generated a density distribution of “button presses” to indi-
cate, at each timepoint (second), what percentage of subjects
in the behavioral study marked a boundary location at that
timepoint (or within +/− 3 s of that timepoint). Specifically, a
binary distribution (event or no event) over time was generated for
each subject. These subject-level distributions were combined to
derive a density distribution reflecting the proportion of subjects
indicating an event per timepoint. We then computed a Pearson

https://www.tensorflow.org/hub/tutorials/semantic_similarity_with_tf_hub_universal_encoder
https://www.tensorflow.org/hub/tutorials/semantic_similarity_with_tf_hub_universal_encoder
https://www.tensorflow.org/hub/tutorials/semantic_similarity_with_tf_hub_universal_encoder
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correlation between this behavioral density distribution and the
density distribution of individual-subject HMM-derived bound-
aries for each region (calculated in the same way) and compared
this true correlation to a null distribution of correlations that
were generated by “rolling” (or circle-shifting) the HMM-derived
boundaries at each TR (thus, the number of permutations was
limited to the number of TRs for each movie). This generation
of a proportion-based density distribution is similar to the “seg-
mentation agreement” previously used to compare individuals
with the group average (Zacks et al. 2006; Bailey et al. 2013a,
2013b).

Peak alignment method
We used our permutation-based alignment metric (see “Com-
puting alignment across subjects”), treating the brain as the
“ground-truth” (i.e. permuting behavioral boundaries) to compare
the behaviorally-derived boundaries to the group-average HMM-
derived boundaries for each region. Normative (group-average)
HMM-derived boundaries were computed by averaging voxelwise
activity across subjects and then fitting an HMM to data within
each region using the pre-determined number of events for
that region (see “Automatic neural event boundary detection”).
To determine the normative boundaries from the behavioral
study for this approach, we needed “peak” shared behavioral
boundaries. For this, we defined the peaks as timepoints when
> 50%, or at least 21/40, subjects marked a boundary and enforced
local sparsity by limiting peaks to timepoints that were more
than 3 s apart. (If two peaks were within 3 s of one another, we
took the higher “peak” [more agreement]; if they were of equal
height, we took the median timepoint.) Importantly, we used 3 s
as our tolerance for small deviations in button-press times across
subjects to be in line with the fMRI data, where we had used 3
TRs (= 3 s).

Combining methods
To declare significant alignment between normative behavioral
and normative neural boundaries in a region, that region had
to show above-chance alignment with behavioral boundaries
(P < 0.05) in both the density and peak methods.

Code accessibility
Data analysis, including links to code and other supporting mate-
rial, can be found at: https://github.com/thefinnlab/individual_
event_seg/.

Data accessibility
Data from this study, including raw MRI data, is available on
OpenNeuro at https://openneuro.org/datasets/ds004516/. Other
data including the behaviorally reported boundaries and the full
transcribed recall and appraisal (text) can be found at: https://
github.com/thefinnlab/individual_event_seg.

Results
In this work, our main goal was to investigate variability in
neural event segmentation at the individual level and its behav-
ioral consequences. We automatically detected region-wise event
boundaries in individual subjects and used these to quantify the
degree of variability across the cortex and how this variability
changes with stimulus content. We also showed how and where
similarity between individuals’ neural event boundaries during
encoding can predict the similarity of recall and interpretation,

thereby highlighting a functional role for event segmentation in
an individual’s ultimate appraisal of an experience.

Slower-segmenting regions show more
individual variability
Forty-three subjects watched four movies during fMRI scanning.
These movies differed in meaningful and important ways (see
Methods—“Movie overview” and Results—“Degree of across-subject
alignment varies with movie content.”). Although we hypothe-
sized that these differences would impact individual variability
(an idea we return to in the following section), our goal with this
first analysis was to demonstrate that cortical patterns of event
segmentation, and individual variability therein, are generally
consistent irrespective of the stimulus used.

To define neural event boundaries, we used a recently devel-
oped algorithm for detecting event boundaries in fMRI data: the
Hidden Markov Model (HMM) proposed by Baldassano et al. (2017),
which does not rely on annotations or hand-demarcated events
but rather detects event boundaries as shifts in stable patterns
of brain activity within a region. Although this algorithm yields
valid neural event boundaries at the group level, to our knowledge,
it had not been previously applied to individual-subject data.
Therefore, we first undertook an analysis to assess whether this
model can stably and reliably detect event boundaries at the
individual level. All fMRI data were parcellated into 100 cortical
regions using the Schaefer atlas (Schaefer et al. 2018).

We first sought to replicate past work (Baldassano et al. 2017;
Geerligs et al. 2022) showing that at the group level, the number
of events (i.e. the granularity of segmentation) is higher in sensory
regions and lower in higher-order association areas that are sen-
sitive to narrative information at longer timescales (Lerner et al.
2011; Honey et al. 2012). Using a train-test procedure to determine
the optimal number of events (k) for each region from group-
average data, we demonstrate that this relationship is maintained
irrespective of the stimulus: event rate (number of events per
minute) follows a posterior-to-anterior gradient (Fig. 1A).

We then investigated to what degree segmentation varied
across individuals. Event segmentation can vary both at the level
of the number of events (k) and the location of boundaries; we
focus here on the latter, both for methodological reasons and
because it is more directly related to movie content (see Methods
section “Automatic neural event boundary detection” for more
details). We used the fixed value of k for each region determined
at the group level (cf. Fig. 1A) to fit an HMM to each individual
subjects’ data from that region (see Methods section “Automatic
neural event boundary detection”). We then assessed to what
degree event boundary locations were aligned across subjects
using a permutation-based method that generates a z-score for
observed alignment relative to an appropriate null distribution
for the total number of boundaries in each region (see Methods
sections “Computing alignment across subjects” and “Across-
subject alignment within movies: Experiment 1”).

Across all four movies, event boundaries were significantly
aligned across subjects in most regions of the brain (>89/100),
but this degree of alignment varied on another posterior to
anterior gradient such that event boundary locations were more
shared in sensory regions and more idiosyncratic in higher-order
regions (Fig. 1B). We established strong correlations (r = 0.78–
.90) between event rate and the degree of alignment across all
four movies: faster-segmenting regions showed higher alignment
across subjects (less individual variability), whereas slower-
segmenting regions showed less alignment across subjects (more
individual variability; Fig. 1C).

https://github.com/thefinnlab/individual_event_seg/
https://github.com/thefinnlab/individual_event_seg/
https://openneuro.org/datasets/ds004516/
https://github.com/thefinnlab/individual_event_seg
https://github.com/thefinnlab/individual_event_seg
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Fig. 1. Segmentation rate and degree of idiosyncrasy in boundary locations covary across the cortex. (A) Event rate. The optimal number of events for
each region (determined at the group level) follows the expected cortical gradient: faster segmentation (more events) in posterior, sensory regions and
slower segmentation (fewer events) in anterior, higher-order regions. (B) Across-subject alignment within the movie. There is generally above-chance
alignment in the location of event boundaries among individuals across the cortex (n = 10,000 bootstraps, q < 0.05, FDR-corrected across 100 regions).
Alignment is highest in posterior sensory regions and lowest in anterior association regions. The degree of alignment in each region varies slightly across
movies. Although greater-than-chance alignment was found in the majority of regions (>89/100) in each movie, regions that did not show significant
alignment tended to be in higher-order regions such as the prefrontal cortex. (C) Correlation between event rate and within-movie alignment. In all four
movies, the event rate and degree of alignment were strongly correlated across regions (Spearman r = 0.78–0.90, P < 0.001) such that fast transitioning
regions were more closely aligned across subjects, whereas slower regions were less aligned (i.e. showed more individual variability). Each gray dot
indicates a region; we highlight a visual region in blue and a prefrontal region in red. Legend: ∗∗∗∗ P < 0.0001.

Notably, insignificant or negative across-subject alignment was
seen in 20 unique regions across the four movies (1 for Defeat, 9
for Iteration, 11 for Growth, and 10 for Lemonade; negative across-
subject alignment would indicate that permuted boundaries have
a higher chance of showing alignment than the true bound-
aries). These regions were located in the prefrontal cortex (14/20),
orbitofrontal cortex (2/20), temporal pole (3/20), and the cingulate
(1/20). Of these, the majority were higher order “default mode”
(40%) or limbic regions (25%) that have the slowest timescales of
information processing (Hasson et al. 2008; Geerligs et al. 2022)
and show more idiosyncratic anatomy and function (Hill et al.
2010; Mueller et al. 2013), including during naturalistic stimu-
lation (Vanderwal et al. 2017; Finn et al. 2020; Gao et al. 2020;
Chang et al. 2021). (It should also be noted, however, that these
regions are also most commonly affected by signal drop-out.) No
parcel showed negative or insignificant alignment across all four

movies. (All analyses in this section were controlled for the effects
of head motion and overall memory performance; see Methods
section “Controlling for possible confounds”).

Degree of across-subject alignment varies with
movie content
Having established that there is significant across-subject align-
ment that follows a cortical gradient in all movies, we next
aimed to quantify how the degree of individual variability in
event segmentation within region differed across the four movies.
To help validate any differences across movies in neural event
segmentation, we conducted an auxiliary behavioral experiment
(Experiment 2—see Methods) in which a separate set of 40 subjects
at Dartmouth College performed the same task as Experiment
1 outside the scanner, except that while watching each movie,
individuals were instructed to press a button each time they
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thought there was an event boundary (i.e. points in the movie
when there is a major change in topic, location, time, etc.). This
allowed us to investigate whether similar patterns of movie-
dependent variability in neural event segmentation were also
present with behavioral event segmentation.

The movies differed in numerous and important ways. For the
purposes of this project, we focus on two a priori selected dimen-
sions: (i) the presence or absence of screen cuts, and (ii) the pres-
ence or absence of social and affective information. Three of our
movies followed a character-driven narrative trajectory complete
with social and affective information (Iteration, Defeat, and Growth),
whereas the fourth (Lemonade) followed a series of mechanical
events (Rube-Goldberg machine) as opposed to a human-driven
plot line. Two—Iteration and Defeat—used continuity editing (i.e.
screen cuts), which serve as a strong cue for the start of a new
event (Schwan et al. 2000; Zacks et al. 2010; Magliano and Zacks
2011; Smith et al. 2012; Loschky et al. 2020). We hypothesized that
both dimensions would facilitate segmentation and increase the
degree of across-subject alignment. First, continuity editing (such
as screen cuts) is a well-documented driver of event boundaries;
it often indicates a scene change and is highly correlated with
situational changes that indicate the start of a new event (Schwan
et al. 2000; Zacks et al. 2010; Magliano and Zacks 2011; Smith et al.
2012; Loschky et al. 2020). Second, socio-affective content often
engages shared schemas of social interactions (e.g. family dinners
in Growth; (Dunbar 1998; Wood et al. 2003; Adolphs et al. 2016) and
is often more engaging than its non-social counterpart. Both social
and affective information induce shared neural responses during
movie-watching (Finn et al. 2018; Chen et al. 2020; Song et al. 2021)
and recall (Chen et al. 2017a; Tomita et al. 2021) and may aid in
segmentation (Boggia and Ristic 2015; Ristic and Capozzi 2022).
It is notable, however, that, somewhat paradoxically, along with
these shared responses, such dynamic, emotional content is also
better suited at pulling out nuanced individual differences (Finn
and Bandettini 2021), which we explore in the next section.

In our dataset, Iteration, a social movie with screen cuts, had
significantly higher self-reported arousal (which we take as a
proxy for affect/emotion) than the other three movies (repeated-
measures ANOVA, F(3,126) = 7.49, P = 0.0001; Iteration > Defeat,
Growth, Lemonade; t ≥ 3.68, P < 0.001). Overall, self-reported
engagement levels did not differ between movies (repeated-
measures ANOVA, F(3,126) =1.67, P = 0.18), although in pairwise
comparisons, Iteration had mildly higher self-reported engage-
ment levels than Defeat (pairwise comparisons, t = 2.2, P = 0.03).
Thus, we expected that we would see the following rank-order
from highest to lowest in across-subject consistency: (i) Iteration
(social information, screen cuts, and most emotionally arousing),
(ii) Defeat (social information and screen cuts), (iii) Growth (social
information, but no screen cuts), and (iv) Lemonade (no social
information and no screen cuts).

We tested these hypotheses by comparing alignment in
each cortical region between each pair of movies (see Methods
section “Identifying stimulus-dependent properties by taking the
difference in alignment across movies.”) (All analyses in this
section were controlled for effects of head motion [in neural
data] and overall memory performance [in both behavioral
and neural data]; see Methods section “Controlling for possible
confounds”.) We used a linear mixed-effects model to assess
the effect of movie on across-subject alignment, with region
treated as a random effect. The analysis revealed a significant
effect of movie (F(3, 300) = 39.5, P < 0.001). Post hoc tests were
conducted to compare the estimated marginal means (EMMs) of
the four movies. The results showed that alignment in Iteration

was significantly higher than Defeat (estimate = 0.09, P = 0.029),
Growth (estimate = 0.27, P < 0.001), and Lemonade (estimate = 0.29,
P < 0.001). Additionally, alignment in Defeat was significantly
higher than in Growth (estimate = 0.18, P < 0.001) and Lemonade
(estimate = 0.20, P < 0.001), whereas Growth and Lemonade did not
differ significantly (estimate = 0.02, P = 0.89). Thus, we observed
the following rank order of movies, from highest to lowest
neural alignment: [Iteration] > [Defeat] > [Growth and Lemonade]
(Fig. 2A). Critically, variability in behavioral alignment largely
mirrored this rank order of movies: although we found significant
overall alignment in behavioral event boundaries within all
movies (P = 0.0001; nbootstraps = 10,000—see Methods section
“Across-subject alignment within movies—Experiment 2”), we
further observed that movies that evoked more variability in
neural event segmentation (across all brain regions) also tended
to evoke more variability in behavioral event segmentation
([Iteration] > [Defeat] > [Growth] > [Lemonade]; linear mixed effects
modeling with movie as fixed effect; pairwise comparisons
of the EMMs are shown in Fig. 2B and bootstrapped pairwise
comparisons are shown in Fig. 2C, behavioral (right) columns).

Again, these four movies differ along many dimensions that
could influence the degree of individual variability in boundary
locations. To formally assess whether our two a priori hypothe-
sized features account for significant variance in across-subject
alignment, we modeled these features (instead of movie iden-
tity itself) as fixed effects in a series of follow-up analyses. For
the neural data, we ran two independent linear mixed effects
models: one with social information (present/absent) and one
with screen cuts/continuity editing (present/absent) as the fixed
effect. Each model contained region as the random effect. Both
social information and continuity editing were significant predic-
tors of neural alignment in their respective models (social: beta
0.17, P < 0.0001; continuity editing: beta 0.24, P < 0.0001). However,
running a single model that included both social information
and continuity editing revealed that when considered jointly, only
continuity editing was a significant predictor of alignment (beta
0.23, P < 0.0001). For the behavioral data, both social information
and continuity editing were significant predictors of behavioral
alignment when treated as fixed effects in a single model (social:
beta 0.91, P < 0.0001; continuity editing: beta 0.80, P < 0.0001) that
also included subject-level crossed-random effects and memory
scores as a fixed effect.

Thus, consistent with our hypotheses, we found that both
behavioral and neural alignment were higher in movies in which
there was a human-driven, social, and emotionally-engaging nar-
rative trajectory, especially when there were screen cuts cueing
new scenes (Iteration, Defeat). In movies where there were no
screen cuts (Growth and Lemonade), across-subject alignment was
lower. This supports the inference that segmentation is more
straightforward for certain types of stimuli irrespective of the
modality (neural/HMM-derived or behaviorally-derived).

Next, we took a region-specific approach to determine where in
the cortex showed the biggest differences in alignment between
movies (in other words, to identify brain regions where the degree
of alignment is most content-dependent). Results are shown in
Fig. 2C (neural (left) columns; nbootstraps = 10,000). We identified
a trend such that certain movie content (social information)
drives more alignment in neural event boundaries in mid-level
regions of association-cortex. For instance, although regions on
either end of the cortical hierarchy showed consistently low (PFC)
or high (V1) alignment across movies (cf. Fig. 1B), canonical social-
processing regions such as the superior temporal sulcus showed
higher alignment in movies with social interactions compared
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Fig. 2. Degree of individual variability in neural and behavioral event segmentation depends on stimulus content. (A) Degree of overall alignment
in neural event boundaries differs by movie. Plots depict the distribution of the estimated marginal means (EMMs) for the alignment across all
regions (n = 100) for each movie. Whole-brain alignment shows the following rank order across movies: [Iteration] > [Defeat] > [Growth and Lemonade].
(B) Degree of alignment in behavioral event boundaries differs by movie. Plots depict the distribution of marginal means for the behavioral alignment
across subjects. Across-subject behavioral alignment shows a rank order across movies that largely correspond to the rank order of neural alignment:
[Iteration] > [Defeat] > [Growth] > [Lemonade]. (C) Cortical variability in degree of alignment across movies and comparison with degree of behavioral
alignment. Left columns show pairwise comparisons between movies, indicating regions where the neural alignment is significantly higher in one movie
versus another. Coloring indicates the movie where there is higher alignment and shade reflects the magnitude of the difference (maps are thresholded
at q < 0.05; FDR-corrected to 100 regions within movie pair). Significance was determined using the residuals after regressing the effects of head motion
and memory performance. Right columns show pairwise comparisons between movies to indicate cases where behavioral alignment is significantly
higher in one movie versus another. For visualization purposes, we show the distribution of the difference in alignment values (z-scores) between pairs
of subjects (the movie on the left was subtracted from the movie on the right). Significance was determined using the residuals after regressing the
effects of memory performance (bootstraps = 10,000). Note that the dominant directionality of each pairwise comparison (i.e. which movie shows higher
alignment) is similar in the neural and behavioral data. Legend: ∗ P < 0.05; ∗∗∗∗ P < 0.0001; n.s., not significant.

to non-social movies ([Iteration, Defeat, Growth] > [Lemonade]). Our
non-social movie, Lemonade, showed primarily higher alignment
in somatomotor processing regions, likely reflecting neural state
changes in response to the continuous switches in the location
and object-driven motion that are specific to this movie.

Shared neural event boundaries lead to shared
interpretations
We next tested the hypothesis that individual variability in neural
event segmentation would have behavioral consequences, such
that individuals who were more similar in their neural event
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boundaries during encoding would also be more similar in their
interpretation of the movie. To do so, we used free-speech data
acquired immediately following each of the four movies in which
subjects were prompted to speak for 3 minutes about what they
remembered and how they felt about the events and characters
(see Methods section “Measuring cross-subject similarity in movie
recall/appraisal” for exact instructions). Crucially, subjects did not
simply recall the events objectively as they might do in a typical
episodic memory task, but also shared subjective interpretations
and overall reflections on the movies, often including links to their
own personal lives. Thus, we henceforth refer to this task as the
appraisal task.

We recorded and transcribed each subject’s speech and sub-
mitted the transcripts to Google’s Universal Sentence Encoder
(USE), a tool from natural language processing (NLP) that encodes
text into high-dimensional vectors that reflect semantic con-
tent (Cer et al. (2018); see Methods section “Measuring cross-
subject similarity in movie recall/appraisal”). Language embed-
dings provide a relatively unbiased way to quantify similarity in
appraisal content. For each movie, we then calculated a subject-
by-subject similarity matrix from these vectors and compared
it to the subject-by-subject similarity matrix of neural event
boundaries in each region while controlling for objective memory
performance (as measured by performance on memory ques-
tions) using an inter-subject representational similarity analysis
(Fig. 3A, inset).

Results (Fig. 3A) showed that in several brain regions, the
degree of alignment in neural event boundaries during movie-
watching predicted similarity in appraisal: in other words,
subjects who were similar in event boundaries in these regions
also tended to speak similarly about the movie afterwards. The
specific regions showing these effects differed for each movie,
but roughly corresponded to regions sensitive to each movie’s
respective high-level content (e.g., humans versus objects;
Iteration, Growth, Defeat versus Lemonade; Speer et al. 2009). In
the three movies with social information (Iteration, Defeat, and
Growth), these regions included high-order social cognition areas
that are often associated with complex narrative processing, some
of which are considered part of the default-mode network (DMN;
for review, see Yeshurun et al. 2021). Three regions—the superior
temporal sulcus, the angular gyrus, and the precuneus—emerged
in all three social movies (Fig. 3A; black contours). Significant
regions in the non-social movie (Lemonade) had a different spatial
pattern from the social movies. These regions included mostly
somatomotor, dorsal-attention, and limbic regions, including
a posterior temporal, ventral stream object-category selective
region, the lingual gyrus, the temporal parietal junction, cingulate,
orbitofrontal cortex, and a left somatomotor region previously
linked to motor imagery (Chen et al. 2009; Chinier et al. 2014).

Relationships between neural boundaries and
interpretations are strongest in regions reflecting
normative behavioral segmentation
As noted above, the different spatial patterns of relationships
between neural event segmentation and appraisal across movies
that we identified in the previous analysis are likely due to dif-
ferences in movie content. For a particular movie, are the regions
most closely tied to group-level behavioral segmentation during
encoding also those most likely to show individual-difference
relationships between segmentation and ultimate appraisal?

To answer this question, we needed to independently quantify
the degree to which neural event boundaries in a region reflect
behavioral event boundaries. Although past work has shown that

automatically detected neural event boundaries tend to align
with behaviorally reported event boundaries in certain regions
of association cortex such as the angular gyrus or the posterior
medial cortex (Baldassano et al. 2017; Lee et al. 2021; Williams
et al. 2022; Yates et al. 2022), this work has typically been limited
to single stimuli, so the extent to which the regions showing
behavioral-neural event alignment holds across stimuli has yet
to be explored.

Toward this goal, we, again, used our auxiliary behavioral
study (Experiment 2) and identified “normative” behavioral
boundaries where subjects agreed, on average, that there was an
event boundary. We then compared these normative behavioral
boundaries with normative neural boundaries determined by
fitting an HMM to the fMRI data averaged across subjects. We
did this neural-behavioral normative boundary comparison using
two approaches (Fig. 3B inset, see Methods section “Comparison
of neural event boundaries and behavioral event boundaries”)
and only considered regions that were significantly aligned to
behavior (P < 0.05) in both methods.

As expected, regions with significant neural-behavioral seg-
mentation alignment varied across movies (Fig. 3B), but generally
showed anatomical consistency with previous reports of regions
that are sensitive to event changes (Zacks et al. 2001; Speer
et al. 2003, 2007; DuBrow and Davachi 2016; Baldassano et al.
2017; Masís-Obando et al. 2022); namely, the temporoparietal
junction, prefrontal cortex, insula, parietal cortex, and cingu-
late (though note, interestingly, that Lemonade, the non-social
movie, showed neural-behavioral segmentation alignment in ear-
lier visual regions).

Finally, we correlated, across regions, the degree of cross-modal
alignment between normative neural and behavioral boundaries
(density metric; Fig. 3B) and the representational similarity
r-value between individual neural event boundaries and appraisal
(cf. Fig. 3A). Indeed, these two properties were positively corre-
lated in three of the four movies (Fig. 3C), indicating that, for a
given movie, segmentation in regions that mirror behaviorally
reported event boundaries at the group level are also relevant
for how that movie is ultimately remembered and appraised
at the individual level. Regions that showed significant cross-
modal normative alignment, as well as a significant relationship
between individual boundary locations and appraisal, are
highlighted with blue contours and blue dots in Fig. 3B and C,
respectively. We suggest that the same regions that show neural
segmentation at moments corresponding to behaviorally reported
boundaries were likely involved in appraising and translating
these events into memory. Future work should investigate this in
a more causal manner.

Discussion
Individuals segment incoming information into events in dif-
ferent ways. Here, using four different short-film stimuli, we
investigated individual differences in neural event boundaries
and how they relate to behavior. Results showed that there is a
posterior-to-anterior gradient for between-subject alignment in
neural event boundaries that is tightly correlated with the rate of
segmentation, such that regions that segment more slowly also
show less alignment (i.e. more individual variability). Notably, we
found strong movie effects for regions in the middle of this gra-
dient: although alignment was high in low-level sensory regions
and low in high-order narrative processing regions across movies,
regions that are more tuned to a certain type of input showed
variable alignment depending on the movie. We also describe one
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Fig. 3. Relationship between neural event segmentation and behavior. (A) Inter-subject representational similarity between neural event boundary
locations and ultimate appraisals. Maps depict regions where pairs of subjects that were more similar in their neural event boundaries also had more
similar interpretations of the movie (partial Mantel test controlling for objective memory performance; q < 0.05, FDR-corrected to 100 regions within the
movie). Black contours indicate regions that showed significant representational similarity across all three social movies: the superior temporal sulcus
(partial Mantel test, q < 0.05, corrected within the movie), the precuneus, and the angular gyrus (partial Mantel test, P < 0.05 uncorrected across all three
social movies). (B) Brain regions where normative (group-level) neural boundaries align with normative (group-level) behavioral boundaries. (q < 0.05,
FDR-corrected across 100 regions within each movie). Importantly, though for each movie there are numerous regions where this relationship holds,
specific regions vary across movies, suggesting that this relationship is somewhat movie-specific. Alignment between normative behavioral and neural
boundaries was computed using two approaches (see Methods; inset depicts an example region in the superior temporal sulcus) Blue contours indicate
regions that also show significant alignment with appraisal (cf. panel A). (C) At the movie level, similar brain regions show relationships with both
normative behavioral segmentation and individual-level appraisals. Specifically, the degree of alignment between neural and behavioral normative
boundaries (“Density alignment”) is correlated with the relationship between individual neural event boundaries and individual interpretations. Gray
dots represent each region. Regions that show a significant relationship in both analyses (blue contours in B) are demarcated with blue dots. Values
reflect Fisher z-transformed correlation coefficients. A Spearman correlation was used. Legend: ∗P < 0.05; ∗∗∗ P < 0.001.
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mechanism by which narratives may generate variable interpre-
tations across people: individuals with more similar neural event
boundaries in certain regions during movie-watching tended to
have more similar appraisals of the movie.

Our first goal was to validate the use of automated event
segmentation algorithms on fMRI data from individual subjects,
and to characterize how much individuals vary in their neural
event boundary locations. We found that although subjects show
above-chance alignment in event boundaries in the majority of
the cortex irrespective of the stimulus, the degree of alignment
decreases from unimodal to transmodal association regions. This
finding is in line with reports using ISC to show that synchrony
of activity decreases from posterior to anterior regions (Yeshurun
et al. 2017a; Haxby et al. 2020; Chang et al. 2022). Thus, regardless
of measurement modality—ISC (continuous activity timecourses)
or event segmentation (discrete state switches)—dynamic neural
responses to external stimuli are more idiosyncratic in higher-
order regions including the temporoparietal junction, superior
temporal sulcus, precuneus, dorsal medial and ventral medial
prefrontal cortex, and the medial frontal gyrus. Notably, these
regions are often considered part of the default mode network
with reported involvement in social cognition, self-referential
processing, and the consolidation of autobiographical memory
(for a review, see Yeshurun et al. 2021).

We also found that the degree of alignment is tightly corre-
lated with segmentation rate across regions. This broadens recent
findings on neural event rates (Baldassano et al. 2017; Geerligs
et al. 2022; Yates et al. 2022) and on the intrinsic process memory
and temporal receptive windows (i.e., the length of time before
a brain area’s response in which information will impact that
response), which are all thought to follow a hierarchical posterior-
to-anterior gradient as well (Lerner et al. 2011; Honey et al. 2012;
Hasson et al. 2015). We suggest that information integration (as
measured by event boundary alignment) is more stereotyped
across subjects in sensory, unimodal cortex and becomes less
standardized in higher-order regions with slower dynamics due,
in part, to idiosyncratic processing strategies, experiences, and
memories.

To support the link between idiosyncratic neural event
boundaries and variable information integration, we demonstrate
that patterns of neural event segmentation in certain regions
relate to an individual’s memory of the segmented experience.
Using ISC, it has been shown that individuals with shared
context (Yeshurun et al. 2017b), shared traits (e.g. paranoia; (Finn
et al. 2018)), or shared experimentally manipulated perspectives
(Lahnakoski et al. 2014) have similar neural responses while
experiencing a narrative. We aimed to extend this past work
and capture meaningful differences in how idiosyncratic neural
activity during encoding relates to endogenously generated
interpretations and recalls. Past work has theorized that current
perceptual information interacts with long-term knowledge about
event categories (schemas and scripts) when forming and updat-
ing event models (Radvansky and Zacks 2014). These stereotyped
changes likely underlie shared boundaries (Baldassano et al.
2018; Masís-Obando et al. 2022) and reflect central hubs in the
narrative (Lee and Chen 2022). We suggest that individual-specific
boundaries—i.e., those not shared among the majority of sub-
jects—may reflect moments with more idiosyncratic meanings
(for example, a moment activating one’s own autobiographical
memory) that lead to variable interpretations of a stimulus. To
test this, we leveraged complex narratives that generated variable
appraisals across people and had subjects freely discuss the
movies. We then used inter-subject representational similarity
analysis to show that pairs of subjects with more similar event

boundaries in numerous higher-order regions, including the
angular gyrus, superior temporal sulcus, and precuneus, also
had more similar appraisals of each stimulus. A large subset of
these regions also reflect behaviorally reported event boundaries.
Altogether, these findings uphold the functional role of these
regions in the high-level encoding of an experience and its
ultimate behavioral consequences, including its organization into
memory.

Although the idea that stimulus features systematically affect
group-level segmentation is not novel—Newtson et al. (1977) were
among the first to consider how a movie’s features encourage
segmentation of continuous streams of information into units—
here, we extend this to characterize how movie content affects
neural and behavioral segmentation at the individual level. We
demonstrated that although the spatial patterns of relative align-
ment were consistent across movies, the absolute degree of align-
ment differed with the specific movie and its content. Although
these four movies differed along numerous dimensions that could
have affected degree of alignment, our two a priori hypothesized
features—namely, the presence of both continuity editing and a
social, character-driven, emotional narrative—drove both higher
overall alignment across the cortex (cf. Fig. 2) and in behaviorally
reported boundaries (cf. Fig. 3).

There are some limitations to this work. First, although our
choice of movies was somewhat principled in that it was based
in existent theories about the effects of content on segmentation
(Grall and Finn 2022), our ultimate stimulus set is still arbitrary
and there are plenty of other low-, mid-, and high-level features
that vary across these movies. We hope that through the release
of our dataset, others can build on this work and investigate
additional stimulus features that may affect individual segmen-
tation patterns and variability therein. Second, our sample size
(n = 43) is relatively low for individual-differences work. However,
the strength of our design is that we compared the same sub-
jects across four movies. Furthermore, we did not attempt to
link individual neural event segmentation patterns to trait-level
behavioral measurements, an analysis for which we would likely
be underpowered; rather, we focused on quantifying the overall
degree of individual variability and how this differs as a function
of both brain region and stimulus content, for which the sample
size should be a less limiting factor.

In sum, our work shows that individual differences in the
location of neural event boundaries (i) meaningfully relate to
behavior, and (ii) vary with stimulus content in both their strength
and spatial patterns, thereby emphasizing the importance
of considering stimulus content in naturalistic neuroimaging
paradigms. Although numerous studies have explored individual
differences in event segmentation at the behavioral level, here,
we extend existing methods to identify individual differences
at the neural level during encoding and their consequences for
how a stimulus is ultimately remembered and appraised. Future
work should investigate individual variability not only in the
temporal locations of event boundaries as we did here, but also
in the rate of segmentation. Future work should also explore
whether personality or clinical traits (see Zacks and Sargent
2010)) that are stable over time are associated with particular
styles of neural segmentation that impact ongoing cognition and
behavior.
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